Title: | Estimation of Environmental Variables and Genetic Parameters |
---|---|
Description: | Performs analyzes and estimates of environmental covariates and genetic parameters related to selection strategies and development of superior genotypes. It has two main functionalities, the first being about prediction models of covariates and environmental processes, while the second deals with the estimation of genetic parameters and selection strategies. Designed for researchers and professionals in genetics and environmental sciences, the package combines statistical methods for modeling and data analysis. This includes the plastochron estimate proposed by Porta et al. (2024) <doi:10.1590/1807-1929/agriambi.v28n10e278299>, Stress indices for genotype selection referenced by Ghazvini et al. (2024) <doi:10.1007/s10343-024-00981-1>, the Environmental Stress Index described by Tazzo et al. (2024) <https://revistas.ufg.br/vet/article/view/77035>, industrial quality indices of wheat genotypes (Szareski et al., 2019), <doi:10.4238/gmr18223>, Ear Indexes estimation (Rigotti et al., 2024), <doi:10.13083/reveng.v32i1.17394>, Selection index for protein and grain yield (de Pelegrin et al., 2017), <doi:10.4236/ajps.2017.813224>, Estimation of the ISGR - Genetic Selection Index for Resilience for environmental resilience (Bandeira et al., 2024) <https://www.cropj.com/Carvalho_18_12_2024_825_830.pdf>, estimation of Leaf Area Index (Meira et al., 2015) <https://www.fag.edu.br/upload/revista/cultivando_o_saber/55d1ef202e494.pdf>, Restriction of control variability (Carvalho et al., 2023) <doi:10.4025/actasciagron.v45i1.56156>, Risk of Disease Occurrence in Soybeans described by Engers et al. (2024) <doi:10.1007/s40858-024-00649-1> and estimation of genetic parameters for selection based on balanced experiments (Yadav et al., 2024) <doi:10.1155/2024/9946332>. |
Authors: | Willyan Junior Adorian Bandeira [aut, cre]
|
Maintainer: | Willyan Junior Adorian Bandeira <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.0 |
Built: | 2025-03-23 06:58:22 UTC |
Source: | https://github.com/willyanjnr/estimatebreed |
Calculates the daily and accumulated thermal sum, considering the subtraction of the average air temperature by the lower cardinal temperature for each crop.
atsum(AAT, crop = "maize", lbt = NULL, verbose = FALSE, plot = FALSE)
atsum(AAT, crop = "maize", lbt = NULL, verbose = FALSE, plot = FALSE)
AAT |
The column with the average air temperature values. |
crop |
Parameter to define the culture. Use 'maize' for maize, 'soybean' for soybean, 'flax' for flaxseed, 'trit' for wheat or 'oat' for oat crop. |
lbt |
Parameter to define the value of the lower basal temperature to be
used in the calculation. If not informed, the function will use the values of
10, 5, 2, 2 and 0 |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plot a graph of thermal accumulation if TRUE. |
Returns the cumulative and total thermal sum considering the
cultivation cycle of the selected crop. Also presents the following parameters:
* Total Cycle
The number of cycle days, for verification.
* TS
The value of the total thermal sum, in daily degree days (GDD).
* TBi
The value used for the lower base temperature.
* General Parameters
Considering the reported average air temperature values, it returns
the maximum, minimum, and coefficient of variation.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) data("clima") clima <- get("clima")[1:150, ] with(clima,atsum(TMED,crop="maize")) #Adjusting lower basal temperature manually with(clima,atsum(TMED,crop="maize",lbt=12))
library(EstimateBreed) data("clima") clima <- get("clima")[1:150, ] with(clima,atsum(TMED,crop="maize")) #Adjusting lower basal temperature manually with(clima,atsum(TMED,crop="maize",lbt=12))
Data set with oat genotypes and industry variables.
aveia
aveia
A data.frame with 54 observations and 6 variables:
14 white oat genotypes.
Experiment blocks.
Number of grains larger than 2 mm.
Grain mass
Caryopsis dough
Grain yield (in kg per ha)
Real field data for use.
Average air temperature and relative humidity data for the period of one year, with time, day and month.
clima
clima
A data.frame with 8760 observations and 5 variables:
Month of the year.
Day of the year.
Time of the day.
Average Air Temperature - in degree C.
Relative Humidity - in %.
Data obtained from the Nasa Power platform (https://power.larc.nasa.gov/).
Data set of phenotypic and genotypic variance, heritability and differential selection for different variables.
coefend
coefend
A data.frame with 7 observations and 5 variables:
Variable name.
Phenotypic Variance.
Genotypic Variance.
Broad-sense heritability
Selection Differential
Real data for use.
Function for calculating the inbreeding coefficient
COI(var, VG, VF, generation = "all", verbose = FALSE)
COI(var, VG, VF, generation = "all", verbose = FALSE)
var |
Column with the variable name |
VG |
Column with genotypic variance |
VF |
Column with phenotypic variance |
generation |
Parameter to select the generation. Use 'all' to get the parameters for all the generations or 'F3', 'F4', 'F5' and 'F6' for just one of the generations. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Returns the total, additive and dominance variance values based on the variance components for a given variable.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Longman.
library(EstimateBreed) var <- c("A","B","C","D","E") VF <- c(2.5, 3.0, 2.8, 3.2, 2.7) VG <- c(1.2, 1.5, 1.3, 1.6, 1.4) data <- data.frame(var,VG,VF) #Calculating for all generations inbr1 <- with(data,COI(var,VG,VF,generation = "all")) #Calculating for just one generation inbr2 <- with(data,COI(var,VG,VF,generation = "F3"))
library(EstimateBreed) var <- c("A","B","C","D","E") VF <- c(2.5, 3.0, 2.8, 3.2, 2.7) VG <- c(1.2, 1.5, 1.3, 1.6, 1.4) data <- data.frame(var,VG,VF) #Calculating for all generations inbr1 <- with(data,COI(var,VG,VF,generation = "all")) #Calculating for just one generation inbr2 <- with(data,COI(var,VG,VF,generation = "F3"))
Didactic table of standard segregation by generation
default_seg(verbose = TRUE)
default_seg(verbose = TRUE)
verbose |
Logical argument. Runs the code silently if FALSE. |
Create a didactic table of standard segregation, considering allogamous and autogamous species and mutants. It shows the expected level of heterozygosity, probable number of genes, environmental effect and Wright's probabilistic coefficient.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) default_seg(verbose=TRUE)
library(EstimateBreed) default_seg(verbose=TRUE)
This function receives a dataframe with temperature and precipitation data and calculates the standard deviation of these parameters for each environment.
desv_clim(ENV, AAT, PREC)
desv_clim(ENV, AAT, PREC)
ENV |
Identification of each selection environment (to differentiate if there is more than one cultivation cycle). |
AAT |
Average air temperature (in degree Celsius) during the cycle in each environment. |
PREC |
Rainfall (in mm) during the cultivation cycle in each environment |
A dataframe containing the identifier of the selection environment and the standard deviations for temperature and precipitation.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) data("desvamb") head(desvamb) #Use DPclim for the ISGR function to identify deviations correctly DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC))
library(EstimateBreed) data("desvamb") head(desvamb) #Use DPclim for the ISGR function to identify deviations correctly DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC))
Data set with average air temperature and precipitation values per environment
desvamb
desvamb
A data.frame with 449 observations and 3 variables:
Selection environment.
Average Air Temperature (in degree C).
Precipitation (in mm)
Real field data for use.
Didactic function - Examples of allelic and gene interactions
didint(type = NULL, ge = NULL)
didint(type = NULL, ge = NULL)
type |
Type of allelic interaction. Use 'ad' for additivity, 'dom' for complete dominance, 'domp' for partial dominance and 'sob' for overdominance. |
ge |
Type of GxE interaction. Use 'aus' for no interaction, 'simple' for simple interaction and 'complex' for complex interaction. |
Plot graphs representing allelic and genotype x environment interactions.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) didint (type="ad") didint (type="dom") didint (type="domp") didint (type="sob") didint (ge="aus") didint (ge="simple") didint (ge="complex")
library(EstimateBreed) didint (type="ad") didint (type="dom") didint (type="domp") didint (type="sob") didint (ge="aus") didint (ge="simple") didint (ge="complex")
Data set with strains and test subjects from a GxE experiment.
genot
genot
A data.frame with 55 observations and 5 variables:
Selected lines in a GXE experiment.
Selection environments.
Number of grains measured in the lines.
Grain mass measured in the lines (in g)
Length of crop cycle (in days)
Real field data for use.
Dataset with two breeding populations, 20 genotypes per population and three replicates per genotype.
genot2
genot2
A data.frame with 60 observations and 4 variables:
Column with population names.
Column with genotype names.
Column with replications.
Column with numerical values of the random variable.
Simulated data for use.
Function for determining selection parameters, based on an experiment carried out on the rice crop. Intended for isolated evaluation of the performance of lines within a given population.
genpar(.data, GEN, REP, vars, K = 0.05, check = FALSE, verbose = FALSE)
genpar(.data, GEN, REP, vars, K = 0.05, check = FALSE, verbose = FALSE)
.data |
The name of the object containing data. |
GEN |
The column with the selected genotypes within the population. |
REP |
The column with the repetitions (if any). |
vars |
The column with the variable of interest. |
K |
Selection pressure (Default 0.05). |
check |
Logical argument. Checks the model's assumptions statistical if the value is equal to TRUE. |
verbose |
Logical argument. Runs the code silently if FALSE. |
A list containing the following components:
Environmental variance (sigmaE) |
The environmental variance (sigmaE) represents the variability in phenotypic traits attributable to environmental factors. This variance is important for understanding how environmental conditions influence the observed phenotype. |
Genotypic variance (sigmaG) |
The genotypic variance (sigmaG) reflects the variability in phenotypic traits attributable to genetic differences between individuals. It is crucial for assessing the genetic potential of a population for a specific trait. |
Phenotypic variance (sigmaP) |
The phenotypic variance (sigmaP) is the total observed variability in the phenotype, which is the sum of environmental and genotypic variances. This measure helps understand the overall range of variation observed in a given dataset. |
Environmental coefficient of variance (ECV) |
The environmental coefficient of variance (ECV) is the ratio of environmental variance to the mean of the phenotypic value, expressed as a percentage. It gives an idea of the magnitude of environmental variation relative to the mean value. |
Genotypic coefficient of variance (GCV) |
The genotypic coefficient of variance (GCV) is the ratio of genotypic variance to the mean of the phenotypic value, also expressed as a percentage. It is used to estimate how much genetic variability can be exploited for improving desirable traits. |
Phenotypic coefficient of variance (PCV) |
The phenotypic coefficient of variance (PCV) is the ratio of phenotypic variance to the mean of the phenotypic value, expressed as a percentage. It provides insight into the overall impact of both genetic and environmental factors on the observed variation. |
Heritability (h2b) |
Heritability (h2b) is the proportion of phenotypic variance attributable to genotypic variance. It indicates the potential for selecting specific traits within a population. |
Genetic advance (GA) |
Genetic advance (GA) represents the amount of genetic progress that can be achieved in one generation by selecting the best individuals for specific traits. |
Genetic advance as percentage of the mean (GAM) |
Genetic advance as a percentage of the mean (GAM) is a measure of how much genetic progress represents relative to the population's mean. This value helps assess the effectiveness of selection strategies. |
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Yadav, S. P. S., Bhandari, S., Ghimire, N. P., Mehata, D. K., Majhi, S. K., Bhattarai, S., Shrestha, S., Yadav, B., Chaudhary, P., & Bhujel, S. (2024). Genetic variability, character association, path coefficient, and diversity analysis of rice (Oryza sativa L.) genotypes based on agro-morphological traits. International Journal of Agronomy, 2024, Article ID 9946332. doi:10.1155/2024/9946332
library(EstimateBreed) data("genot2") #Geting parameters without cheking model assumptions parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2")) parameters$anova parameters$gp #Checking model assumptions parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2"),check=TRUE) parameters$anova parameters$gp
library(EstimateBreed) data("genot2") #Geting parameters without cheking model assumptions parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2")) parameters$anova parameters$gp #Checking model assumptions parameters <- genpar(genot2,Gen,Rep,var =c("VAR1", "VAR2"),check=TRUE) parameters$anova parameters$gp
Calculation of heterosis and heterobeltiosis parameters of hybrids
het(GEN, GM, GP, PR, REP, param = "all", verbose = FALSE)
het(GEN, GM, GP, PR, REP, param = "all", verbose = FALSE)
GEN |
The column with the genotype name |
GM |
The column with the average of the maternal parent |
GP |
The column with the average of the paternal parent |
PR |
The column with the average of the progeny |
REP |
The column with the repetitions (if exists) |
param |
Value to determine the parameter to be calculated. Default is 'all'. To calculate heterosis only, use 'het'. To calculate only heterobeltiosis, use 'hetb'. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Returns heterosis values based on the performance of the tested parents and progenies. The standard error (SE) is also reported for each parameter.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) data("maize") #Extract heterosis and heterobeltiosis general <- with(maize,het(GEN,GM,GP,PR,REP,param="all")) #Only extract heterosis het <- with(maize,het(GEN,GM,GP,PR,REP,param = "het")) #Extract only heterobeltiosis hetb <- with(maize,het(GEN,GM,GP,PR,REP,param = "hetb"))
library(EstimateBreed) data("maize") #Extract heterosis and heterobeltiosis general <- with(maize,het(GEN,GM,GP,PR,REP,param="all")) #Only extract heterosis het <- with(maize,het(GEN,GM,GP,PR,REP,param = "het")) #Extract only heterobeltiosis hetb <- with(maize,het(GEN,GM,GP,PR,REP,param = "hetb"))
Useful function for characterizing the hectolitre weight (HW) of experiments with cereals.
hw(GEN, HL, crop = "trit", stat = "all")
hw(GEN, HL, crop = "trit", stat = "all")
GEN |
The column with the genotype name |
HL |
Weight obtained on a 1qt lt scale, as determined by the Rules for Seed Analysis (RAS), Ministry of Agriculture, Livestock and Supply (2009). |
crop |
Argument for selecting culture. Use 'trit' for wheat, 'oat' for white oats, 'rye' for rye and 'barley' for barley |
stat |
Argument to select the function output type. Use 'all' to estimate the HW for all replicates, or 'mean' to extract the mean for each genotype. |
Returns the estimated value for the hectoliter weight considering the selected cereal.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Brasil. Ministerio da Agricultura, Pecuaria e Abastecimento. Secretaria de Defesa Agropecuaria. Regras para Analise de Sementes. Brasilia: MAPA/ACS, 2009. 399 p. ISBN 978-85-99851-70-8.
library(EstimateBreed) GEN <- rep(paste("G", 1:5, sep=""), each = 3) REP <- rep(1:3, times = 5) MG <- c(78.5, 80.2, 79.1, 81.3, 82.0, 80.8, 76.9, 78.1, 77.5, 83.2, 84.1, 82.9, 77.4, 78.9, 79.3) data <- data.frame(GEN, REP, MG) trit <- with(data,hw(GEN,MG,crop="trit")) #Extract the average PH per genotype trit <- with(data,hw(GEN,MG,crop="trit",stat="mean"))
library(EstimateBreed) GEN <- rep(paste("G", 1:5, sep=""), each = 3) REP <- rep(1:3, times = 5) MG <- c(78.5, 80.2, 79.1, 81.3, 82.0, 80.8, 76.9, 78.1, 77.5, 83.2, 84.1, 82.9, 77.4, 78.9, 79.3) data <- data.frame(GEN, REP, MG) trit <- with(data,hw(GEN,MG,crop="trit")) #Extract the average PH per genotype trit <- with(data,hw(GEN,MG,crop="trit",stat="mean"))
Estimating the viability index from the combination of two field variables.
indviab( GEN, var1, var2, ylab = "Index", xlab = "Genotype", stat = "all", verbose = FALSE, plot = FALSE )
indviab( GEN, var1, var2, ylab = "Index", xlab = "Genotype", stat = "all", verbose = FALSE, plot = FALSE )
GEN |
The column with the name of the genotypes |
var1 |
The column containing the first variable |
var2 |
The column containing the second variable |
ylab |
The name of the chart's Y axis |
xlab |
The name of the chart's X axis |
stat |
Logical argument. Use 'all' to return the values obtained for all observations or 'mean' to return the mean per genotype. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plot a graphic if 'TRUE'. |
Returns the index obtained between the reported variables. The higher the index, the better the genotype.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Rigotti, E. J., Carvalho, I. R., Loro, M. V., Pradebon, L. C., Dalla Roza, J. P., & Sangiovo, J. P. (2024). Seed and grain yield and quality of wheat subjected to advanced harvest using a physiological ripening process. Revista Engenharia na Agricultura - REVENG, 32, 54-64. doi:10.13083/reveng.v32i1.17394
library(EstimateBreed) data("trigo") #Ear viability index index1 <- with(trigo,indviab(TEST,NGE,NEE)) #Ear harvest index index2 <- with(trigo,indviab(TEST,MGE,ME)) #Spikelet deposition index in the ear index3 <- with(trigo,indviab(TEST,NEE,CE))
library(EstimateBreed) data("trigo") #Ear viability index index1 <- with(trigo,indviab(TEST,NGE,NEE)) #Ear harvest index index2 <- with(trigo,indviab(TEST,MGE,ME)) #Spikelet deposition index in the ear index3 <- with(trigo,indviab(TEST,NEE,CE))
Selection index for protein and grain yield (Pelegrin et al., 2017).
is_ptnerg(GEN, PTN, RG, verbose = TRUE)
is_ptnerg(GEN, PTN, RG, verbose = TRUE)
GEN |
The column with the name of the genotype |
PTN |
The column with the crude protein values |
RG |
The column with the grain yield values (in kg per ha) |
verbose |
Logical argument. Runs the code silently if FALSE. |
Returns an industrial wheat quality index based solely on protein and grain yield.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
de Pelegrin, A. J., Carvalho, I. R., Nunes, A. C. P., Demari, G. H., Szareski, V. J., Barbosa, M. H., ... & da Maia, L. C. (2017). Adaptability, stability and multivariate selection by mixed models. American Journal of Plant Sciences, 8(13), 3324.
library(EstimateBreed) Gen <- c("G1", "G2", "G3", "G4", "G5") PTN <- c(12.5, 14.2, 13.0, 11.8, 15.1) RG <- c(3500, 4000, 3700, 3300, 4100) data <- data.frame(Gen,PTN,RG) iqptn <- with(data,is_ptnerg(Gen,PTN,RG))
library(EstimateBreed) Gen <- c("G1", "G2", "G3", "G4", "G5") PTN <- c(12.5, 14.2, 13.0, 11.8, 15.1) RG <- c(3500, 4000, 3700, 3300, 4100) data <- data.frame(Gen,PTN,RG) iqptn <- with(data,is_ptnerg(Gen,PTN,RG))
Function for determining industrial quality indices of wheat genotypes, described by Szareski et al. (2019).
is_qindustrial(GEN, NQ, W, PTN, verbose = TRUE)
is_qindustrial(GEN, NQ, W, PTN, verbose = TRUE)
GEN |
The column with the genotype name |
NQ |
The column with the falling number |
W |
The column with the gluten force (W) |
PTN |
The column with the protein values |
verbose |
Logical argument. Runs the code silently if FALSE. |
Determines the industrial quality index for wheat crops, when considering variables used to classify wheat cultivars.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Szareski, V. J., Carvalho, I. R., Kehl, K., Levien, A. M., Lautenchleger, F., Barbosa, M. H., ... & Aumonde, T. Z. (2019). Genetic and phenotypic multi-character approach applied to multivariate models for wheat industrial quality analysis. Genetics and Molecular Research, 18(3), 1-14.
library(EstimateBreed) data("ptn") with(ptn,is_qindustrial(Cult,NQ,W,PTN))
library(EstimateBreed) data("ptn") with(ptn,is_qindustrial(Cult,NQ,W,PTN))
Estimation of the selection index for environmental resilience (Bandeira et al., 2024).
isgr(GEN, ENV, NG, MG, CICLO, req = 3.5, stage = NULL)
isgr(GEN, ENV, NG, MG, CICLO, req = 3.5, stage = NULL)
GEN |
Column referring to genotypes. Lines must have the prefix 'L' before the number. Ex: L139. |
ENV |
The column for the selection environment. |
NG |
Number of grains of all genotypes evaluated |
MG |
Grain mass of all genotypes evaluated |
CICLO |
Number of days in the cycle to define rainfall ideal (value of 3.5 mm per day). Can be changed manually in the 'req' argument. |
req |
Average daily water demand for the soybean crop (standard 3.5 mm). May change depending on the phenological stage. |
stage |
Parameter to define the phenological stage the crop is in Use 'veg' for vegetative and 'rep' for reproductive, if the evaluations have only been carried out in a given period. |
The ISGR - Genetic Selection Index for Resilience defines the ability of genotypes to express their productivity components under the conditions of air temperature and rainfall offered by the environment. The lower the index, the more resilient the genotype.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Bandeira, W. J. A., Carvalho, I. R., Loro, M. V., da Silva, J. A. G., Dalla Roza, J. P., Scarton, V. D. B., Bruinsma, G. M. W., & Pradebon, L. C. (2024). Identifying soybean progenies with high grain productivity and stress resilience to abiotic stresses. Aust J Crop Sci, 18(12), 825-830.
library(EstimateBreed) #Obtain environmental deviations data("desvamb") head(desvamb) #Use DPclim for the ISGR function to identify deviations correctly DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC)) #Calculate the ISGR data("genot") head(genot) isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO)) #Define the water requirement per stage isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO,req=5,stage="rep"))
library(EstimateBreed) #Obtain environmental deviations data("desvamb") head(desvamb) #Use DPclim for the ISGR function to identify deviations correctly DPclim <- with(desvamb,desv_clim(ENV,TMED,PREC)) #Calculate the ISGR data("genot") head(genot) isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO)) #Define the water requirement per stage isgr_index <- with(genot, isgr(GEN,ENV,NG,MG,CICLO,req=5,stage="rep"))
Determining the UTI (temperature and humidity index) from the air temperature and relative humidity values over a given period of time
itu(AAT, RH)
itu(AAT, RH)
AAT |
The column with the average air temperature values |
RH |
The column with the relative humidity values |
Returns the stress condition based on the reported air temperature and relative humidity values, being: Non-stressful condition (ITU>=70), Heat stress condition (ITU between 71 and 78), Severe heat stress (ITU between 79 and 83), and Critical heat stress condition (ITU above 84).
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Tazzo, I. F., Tarouco, A. K., Allem Junior P. H. C., Bremm, C., Cardoso, L. S., & Junges, A. H. (2024). Indice de Temperatura e Umidade (ITU) ao longo do verao de 2021/2022 e estimativas dos impactos na bovinocultura de leite no Rio Grande do Sul, Brasil. Ciencia Animal Brasileira, 2,5, e-77035P.
Utility function for estimating crop LAI
lai(GEN, W, L, TNL, TDL, crop = "soy", sp = 0.45, sden = 14, verbose = TRUE)
lai(GEN, W, L, TNL, TDL, crop = "soy", sp = 0.45, sden = 14, verbose = TRUE)
GEN |
The column with the genotype name |
W |
The column with the width of the leaf (in meters). |
L |
The column with the length of the leaf (in meters). |
TNL |
The column with the total number of leaves. |
TDL |
The column with the total number of dry leaves. |
crop |
Crop sampled. Use 'soy' for soybean and 'maize' for maize, 'trit' for wheat, 'rice' for rice, 'bean' for bean, 'sunflower' for sunflower, 'cotton' for cotton, 'sugarcane' for sugarcane, 'potato' for potato and 'tomato' for tomato. |
sp |
Row spacing (Standard sp=0.45). |
sden |
Sowing density, in plants per linear meter (standard sden=14). |
verbose |
Logical argument. Runs the code silently if FALSE. |
Returns the accumulated leaf area, the potential leaf area index (considering the total number of leaves) and the actual leaf area index (making the adjustment considering the number of dry leaves) for each genotype
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Meira, D., Queiroz de Souza, V., Carvalho, I. R., Nardino, M., Follmann, D. N., Meier, C., Brezolin, P., Ferrari, M., & Pelegrin, A. J. (2015). Plastocrono e caracteres morfologicos da soja com habito de crescimento indeterminado. Revista Cultivando o Saber, 8(2), 184-200.
library(EstimateBreed) data("leafarea") #Crop selection soy_lai<-with(leafarea,lai(GEN,C,L,TNL,TDL,crop="soy")) #Changing row spacing and sowing density maize_lai<-with(leafarea,lai(GEN,C,L,TNL,TDL,crop="maize",sp=0.45,sden=4))
library(EstimateBreed) data("leafarea") #Crop selection soy_lai<-with(leafarea,lai(GEN,C,L,TNL,TDL,crop="soy")) #Changing row spacing and sowing density maize_lai<-with(leafarea,lai(GEN,C,L,TNL,TDL,crop="maize",sp=0.45,sden=4))
Data set with 10 genotypes and values for leaf length, leaf width, number of total leaves and number of dry leaves
leafarea
leafarea
A data.frame with 10 observations and 5 variables:
Column with the genotypes.
Leaf lenght
Leaf width
Total number of leaves.
Total dry leavesh.
Simulated data.
Data set with wheat genotypes, protein percentage and grain yield.
lin
lin
A data.frame with 24 observations and 7 variables:
Base population.
Phenotypic average of grain mass per plant.
Genotypic average of grain mass per plant.
Phenotypic variance
Genetic variance
Heritability in the broad sense
Witness parameters
Real field data for use.
Determination of maximum technical efficiency (MTE) and plateau regression.
linearest(indep, dep, type = NULL, alpha = 0.05, verbose = FALSE)
linearest(indep, dep, type = NULL, alpha = 0.05, verbose = FALSE)
indep |
Name of the column with the independent variable. |
dep |
Name of the dependent variable column |
type |
Type of analysis to be carried out. Use 'MTE' to extract the maximum technical efficiency or 'plateau' for plateau regression. |
alpha |
Significance of the test. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Calculates the maximum technical efficiency (MTE) based on a quadratic polynomial model, if it is significant. The MTE is given by:
It also calculates plateau regression parameters, returning: - The plateau value:
- The growth rate:
- The inflection point:
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) data("mtcars") met<-with(mtcars,linearest(wt,mpg,type = "MTE",verbose=TRUE))
library(EstimateBreed) data("mtcars") met<-with(mtcars,linearest(wt,mpg,type = "MTE",verbose=TRUE))
Data set with progenies and maternal and paternal maize genitors.
maize
maize
A data.frame with 4 observations and 3 variables:
Progenies.
Maternal Parent
Patern Parent
Simulated Data.
Utility function for plotting graphs of thermal preferences for crops. It is necessary to inform the temperature values (minimum, average or maximum).
optemp( VAR, crop = NULL, verbose = FALSE, plot = TRUE, ylab = "Meteorological Atribute", xlab = "Days After Sowing" )
optemp( VAR, crop = NULL, verbose = FALSE, plot = TRUE, ylab = "Meteorological Atribute", xlab = "Days After Sowing" )
VAR |
The column with air temperature values (minimum, average or maximum). |
crop |
Parameter to define the culture. Use 'soybean' for soybean crop, 'maize' for maize crop and 'trit' for wheat crop. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plot a graph of optimal temperatures if TRUE. |
ylab |
The name of the Y axis. |
xlab |
The name of the X axis. |
Returns the parameters of lower basal and optimum temperature, upper basal and optimum temperature, maximum temperature and average temperature.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) data("clima") clima <- get("clima")[1:150, ] with(clima,optemp(TMED,crop="soybean"))
library(EstimateBreed) data("clima") clima <- get("clima")[1:150, ] with(clima,optemp(TMED,crop="soybean"))
Fictitious data set for estimating soybean plastochron based on on the number of nodes
pheno
pheno
A data.frame with 135 observations and 5 variables:
Days in the soybean cycle.
The column with the name of the genotype.
The column with the average temperature values.
The column with the phenological stage.
The column with the number of nodes.
Simulated data for use.
Estimation of soybean plastochron using average air temperature and number of nodes
plast(GEN, AAT, STAD, NN, habit = "ind", verbose = FALSE, plot = FALSE)
plast(GEN, AAT, STAD, NN, habit = "ind", verbose = FALSE, plot = FALSE)
GEN |
The column with the genotype name. |
AAT |
The column with the average air temperature values. |
STAD |
The column with the phenological stages of soybean, as described by Fehr & Caviness (1977). |
NN |
The column with the number of nodes measured in field. |
habit |
Growth habit of the genotype (default = "ind"). Use "ind" for indeterminate and "det" for determinate. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Returns a graph with the linear models if TRUE. |
If the growth habit is determined, the function returns a linear model for the V1 to R1 stages (Early Pheno) and a linear model for the R1 to R5 stages (Late Pheno). If the growth habit is indeterminate, returns three linear models: Early Pheno (V1 to R1), Intermediate Pheno (R1 to R3) and Late Pheno (R3 to R5).
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Porta, F. S. D., Streck, N. A., Alberto, C. M., da Silva, M. R., & Tura, E. F. (2024). Improving understanding of the plastochron of determinate and indeterminate soybean cultivars. Revista Brasileira de Engenharia Agricola e Ambiental, 28(10), e278299. doi:10.1590/1807-1929/agriambi.v28n10e278299
Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Iowa State University of Science and Technology Special Report, 80, 1-11.
library(EstimateBreed) data("pheno") mod1 <- with(pheno, plast(GEN,TMED,EST,NN,habit="ind",plot=TRUE)) mod1
library(EstimateBreed) data("pheno") mod1 <- with(pheno, plast(GEN,TMED,EST,NN,habit="ind",plot=TRUE)) mod1
Calculation of the photothermal index based on average temperature and radiation
ptermal(DAY, AAT, RAD, PER, verbose = FALSE)
ptermal(DAY, AAT, RAD, PER, verbose = FALSE)
DAY |
The column with the cycle days |
AAT |
The column with the average air temperature values |
RAD |
The column with the incident radiation values |
PER |
The column with the period (use VEG for vegetative and REP for reproductive) |
verbose |
Logical argument. Runs the code silently if FALSE. |
Retorna o ind fototermal
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Zanon, A. J., & Tagliapietra, E. L. (2022). Ecofisiologia da soja: Visando altas produtividades (2a ed.). Field Crops.
library(EstimateBreed) data("termaldata") termal <- with(termaldata,ptermal(Day,Temperature,Radiation,Period)) termal
library(EstimateBreed) data("termaldata") termal <- with(termaldata,ptermal(Day,Temperature,Radiation,Period)) termal
Data set with wheat cultivars and grain rheological characters.
ptn
ptn
A data.frame with 360 observations and 5 variables:
Wheat cultivars.
Sample identification number.
Falling Number.
Gluten Strength (W).
Grain Protein.
Real laboratory data.
Wheat genotype, protein and grain yield data set
ptnrg
ptnrg
A data.frame with 360 observations and 5 variables:
Wheat cultivars.
Repetition number.
Grain protein.
Grain yield (kg ha)
Real field data.
Calculating the Hulling Index and Industrial Yield of White Oats
rend_ind(GEN, NG2M, MG, MC, RG, stat = "all", verbose = FALSE, ...)
rend_ind(GEN, NG2M, MG, MC, RG, stat = "all", verbose = FALSE, ...)
GEN |
The column with the name of the genotypes. |
NG2M |
The column with values for the number of grains larger than 2mm. |
MG |
The column with grain mass values. |
MC |
The column with karyopsis mass values. |
RG |
The column with the grain yield values (kg per ha). |
stat |
Logical argument. Use 'all' to keep all the observations or 'mean' to extract the overall average. |
verbose |
Logical argument. Runs the code silently if FALSE. |
... |
General parameters of ggplot2 for utilization |
Returns the peeling index and industrial yield considering the standards desired by the industry.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) data("aveia") # Calculate the industrial yield without extracting the average with(aveia, rend_ind(GEN,NG2M,MG,MC,RG)) # Calculate the industrial yield by extracting the average per genotype with(aveia, rend_ind(GEN,NG2M,MG,MC,RG,stat="mean"))
library(EstimateBreed) data("aveia") # Calculate the industrial yield without extracting the average with(aveia, rend_ind(GEN,NG2M,MG,MC,RG)) # Calculate the industrial yield by extracting the average per genotype with(aveia, rend_ind(GEN,NG2M,MG,MC,RG,stat="mean"))
Method for restricting the variability of control proposed by Carvalho et al. (2023). It uses the restriction of the mean plus or minus one standard deviation. standard deviation, which restricts variation by removing asymmetric values.
restr(TEST, REP, Xi, scenario = NULL, zstat = NULL, verbose = FALSE)
restr(TEST, REP, Xi, scenario = NULL, zstat = NULL, verbose = FALSE)
TEST |
The column with the name of the witness |
REP |
The column with the replications |
Xi |
The column with the observed value for a given genotype. |
scenario |
Scenario to be used for the calculation. Use 'original' to do not restrict the witnesses by the mean plus or minus the standard deviations, or 'restr' to apply the restriction. |
zstat |
Logical argument. Applies Z-notation normalization if 'TRUE'. |
verbose |
Logical argument. Runs the code silently if FALSE. |
Describes controls that were removed from the dataset to restrict variability.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Carvalho, I. R., Silva, J. A. G. da, Moura, N. B., Ferreira, L. L., Lautenchleger, F., & Souza, V. Q. de. (2023). Methods for estimation of genetic parameters in soybeans: An alternative to adjust residual variability. Acta Scientiarum. Agronomy, 45, e56156. doi:10.4025/actasciagron.v45i1.56156
library(EstimateBreed) TEST <- rep(paste("T", 1:5, sep=""), each=3) REP <- rep(1:3, times=5) Xi <- rnorm(15, mean=10, sd=2) data <- data.frame(TEST,REP,Xi) #Apply the control variability constraint Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = FALSE)) #Apply control variability restriction with normalization (Z statistic) Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = TRUE))
library(EstimateBreed) TEST <- rep(paste("T", 1:5, sep=""), each=3) REP <- rep(1:3, times=5) Xi <- rnorm(15, mean=10, sd=2) data <- data.frame(TEST,REP,Xi) #Apply the control variability constraint Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = FALSE)) #Apply control variability restriction with normalization (Z statistic) Control <- with(data, restr(TEST,REP,Xi,scenario = "restr",zstat = TRUE))
Calculation of the Risk of Disease Occurrence in Soybeans as a Function of Variables meteorological variables (Engers et al., 2024).
risk(DAY, MONTH, AAT, RH, disease = "rust", verbose = FALSE, plot = FALSE)
risk(DAY, MONTH, AAT, RH, disease = "rust", verbose = FALSE, plot = FALSE)
DAY |
The column for the day of the month. |
MONTH |
The column for the month of the year (numeric value). |
AAT |
The average air temperature column (in degree Celsius). |
RH |
The relative humidity column (in %). |
disease |
Define the soybean disease (Standard = 'rust'). |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Plot a graph of the accumulation (Default is F (FALSE)). |
Returns the parameters of the incidence probability of the selected
disease in the soybean crop, being:
* RHrisk
Risk caused by relative humidity.
* TEMPrisk
Risk caused by air temperature.
* TOTALrisk
Product of the multiplication between RHrisk and TEMPrisk.
* RELrisk
Relative risk obtained from the highest value of TOTALrisk.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
de Oliveira Engers, L.B., Radons, S.Z., Henck, A.U. et al. Evaluation of a forecasting system to facilitate decision-making for the chemical control of Asina soybean rust. Trop. plant pathol. 49, 539-546 (2024). doi:10.1007/s40858-024-00649-1
library(EstimateBreed) # Rust Risk Prediction data("clima") with(clima, risk(DY, MO, TMED, RH, disease = "rust"))
library(EstimateBreed) # Rust Risk Prediction data("clima") with(clima, risk(DY, MO, TMED, RH, disease = "rust"))
Computes selection gain using different selection methods
SG( Var, h, VF = NULL, P = "1", DS = NULL, Year = NULL, method = "pressure", verbose = FALSE )
SG( Var, h, VF = NULL, P = "1", DS = NULL, Year = NULL, method = "pressure", verbose = FALSE )
Var |
The column with the name of the variables of interest |
h |
The column with the restricted heritability values |
VF |
The column with the phenotypic variance values (optional) |
P |
The column with the progeny values or selection pressure (optional) |
DS |
The column with the selection differential values (optional) |
Year |
The column with the year of selection (optional) |
method |
The selection method: 'pressure', 'differential', 'genitor_control", or 'year_weighted' |
verbose |
Logical argument. Runs the code silently if FALSE. |
A data frame with selection gain results
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", method = "pressure") SG(Var = c("A", "B", "C"), h = 0.5, DS = 1.5, method = "differential") SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", method = "genitor_control") SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", Year = 5, method = "year_weighted")
library(EstimateBreed) SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", method = "pressure") SG(Var = c("A", "B", "C"), h = 0.5, DS = 1.5, method = "differential") SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", method = "genitor_control") SG(Var = c("A", "B", "C"), h = 0.5, VF = 1.2, P = "10", Year = 5, method = "year_weighted")
Selection indices for genotypes conducted under stress conditions cited by Ghazvini et al. (2024).
stind( GEN, YS, YC, index = "ALL", bygen = TRUE, verbose = FALSE, plot = FALSE, xlab = "Genotype", ylab = "Values", ... )
stind( GEN, YS, YC, index = "ALL", bygen = TRUE, verbose = FALSE, plot = FALSE, xlab = "Genotype", ylab = "Values", ... )
GEN |
The column with the genotypes to be selected. |
YS |
Productivity of the genotype without stress conditions. |
YC |
Genotype productivity under stressful conditions. |
index |
Index to be calculated (Standard 'ALL'). The indices to be used are: 'STI' - Stress Tolerance Index, 'YI' - Yield Index, 'GMP' - Geometric Mean Productivity, 'MP' - Mean Productivity, 'MH' - Harmonic Mean, 'SSI' - Stress Stability Index, 'YSI' - Yield Stability Index, 'RSI' - Relative Stress Index. |
bygen |
Returns the average of each genotype if 'TRUE'. Only in this way it will be possible to plot graphs. |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Plot graph if equal to 'TRUE' (Standard 'FALSE'). |
xlab |
Adjust the title of the x-axis in the graph. |
ylab |
Adjust the title of the y-axis in the graph. |
... |
General ggplot2 parameters for graph customization. |
Returns a table with the genotypes and the selected indices. The higher the index value, the more resilient the genotype.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Ghazvini, H., Pour-Aboughadareh, A., Jasemi, S.S. et al. A Framework for Selection of High-Yielding and Drought-tolerant Genotypes of Barley: Applying Yield-Based Indices and Multi-index Selecion Models. Journal of Crop Health 76, 601-616 (2024). doi:10.1007/s10343-024-00981-1
library(EstimateBreed) data("aveia") #General index <- with(aveia,stind(GEN,MC,MG,index = "ALL",bygen=TRUE)) #Only the desired index STI <- with(aveia,stind(GEN,MC,MG,index = "STI",bygen=TRUE))
library(EstimateBreed) data("aveia") #General index <- with(aveia,stind(GEN,MC,MG,index = "ALL",bygen=TRUE)) #Only the desired index STI <- with(aveia,stind(GEN,MC,MG,index = "STI",bygen=TRUE))
Estimates the effective population size () adapted from Morais (1997).
The function provides two different calculation methods: 'classic' and 'alternative'.
The classic method follows the equation:
The alternative method is calculated as:
tamef(GEN, SI, NE, remove_na = TRUE, method = "classic", verbose = TRUE)
tamef(GEN, SI, NE, remove_na = TRUE, method = "classic", verbose = TRUE)
GEN |
The column with the name of the genotype (progeny). |
SI |
The column with the number of individuals selected. |
NE |
Number of individuals conducted during the selection period. |
remove_na |
Logical argument. If 'TRUE', missing values will be removed. |
method |
Character string specifying the calculation method. Options are classic' (default) or 'alternative'. 'classic' uses the variance-based method, while 'alternative' uses an adjusted method that accounts for reproductive variation. |
verbose |
Logical argument. Runs the code silently if FALSE. |
The result is the effective population size for any variable, based on the number of individuals conducted and selected.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
Morais, R. P. (1997). Effective population size and genetic diversity in improved populations of self-pollinated plants (Doctoral dissertation, University of Campinas).
library(EstimateBreed) GEN <- c("Genotype1", "Genotype2", "Genotype3", "Genotype4", "Genotype5") SI <- c(10, 15, 12, 18, 14) NE <- c(100, 150, 120, 180, 140) data <- data.frame(GEN,SI,NE) with(data, tamef(GEN, SI, NE, method = "classic"))
library(EstimateBreed) GEN <- c("Genotype1", "Genotype2", "Genotype3", "Genotype4", "Genotype5") SI <- c(10, 15, 12, 18, 14) NE <- c(100, 150, 120, 180, 140) data <- data.frame(GEN,SI,NE) with(data, tamef(GEN, SI, NE, method = "classic"))
Determining the ideal time for pesticide application using TDELTA
tdelta( LON, LAT, type = 2, days = 7, control = NULL, details = FALSE, verbose = TRUE, dates = NULL, plot = FALSE )
tdelta( LON, LAT, type = 2, days = 7, control = NULL, details = FALSE, verbose = TRUE, dates = NULL, plot = FALSE )
LON |
Longitude (in decimal) |
LAT |
Latitude (in decimal) |
type |
Type of analysis. Use 1 for forecast and 2 for temporal data. |
days |
Number of days (only use this argument if type=1). |
control |
Type of product to be applied. Use 'fung' for fungicide, 'herb' for herbicide, 'ins' for insecticides, 'bio' for biological products. |
details |
Returns the result in detail if TRUE. |
verbose |
Logical argument. Runs the code silently if FALSE. |
dates |
Only use this argument if type=2. Start and end date for obtaining weather data for a crop cycle. |
plot |
Logical argument. Plots a graphic if 'TRUE'. |
Returns the ideal application times, considering each scenario. Taking as a parameter a TDELTA between 2 and 8, wind speed between 3 and 8, and no precipitation.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) # Forecasting application conditions forecast <- tdelta(-53.6969,-28.0638,type=1,days=10,verbose=TRUE) # Retrospective analysis of application conditions retrosp <- tdelta(-53.6969,-28.0638,type=2,days=10, dates=c("2023-01-01","2023-05-01"), verbose=TRUE)
library(EstimateBreed) # Forecasting application conditions forecast <- tdelta(-53.6969,-28.0638,type=1,days=10,verbose=TRUE) # Retrospective analysis of application conditions retrosp <- tdelta(-53.6969,-28.0638,type=2,days=10, dates=c("2023-01-01","2023-05-01"), verbose=TRUE)
Data Set with air temperature and incident radiation.
termaldata
termaldata
A data.frame with 100 observations and 4 variables:
Column with cycle lenght.
Column with two periods (vegetative and reproductive).
Average air temperature values.
Incident radiation values.
Simulated data for use.
Selection of Transgressive Genotypes - Selection Differential (SD)
transg( Gen, Var, Control, verbose = FALSE, plot = FALSE, ylab = "Selection", xlab = "Genotypes" )
transg( Gen, Var, Control, verbose = FALSE, plot = FALSE, ylab = "Selection", xlab = "Genotypes" )
Gen |
The column with the genotype name |
Var |
The column with the values for the variable of interest |
Control |
The column with the value of the variable 'X' for the controls |
verbose |
Logical argument. Runs the code silently if FALSE. |
plot |
Logical argument. Plots a graphic if 'TRUE'. |
ylab |
The name of the Y axis. |
xlab |
The name of the X axis. |
Returns the general parameters and the genotypes selected for each treshold. Also plot a representative graph of the selected genotypes based on the mean and standard deviations.
Willyan Junior Adorian Bandeira
Ivan Ricardo Carvalho
Murilo Vieira Loro
Leonardo Cesar Pradebon
Jose Antonio Gonzalez da Silva
library(EstimateBreed) Gen <- paste0("G", 1:20) Var <- round(rnorm(20, mean = 3.5, sd = 0.8), 2) Control <- rep(3.8, 20) data <- data.frame(Gen,Var,Control) transg_sel <- with(data,transg(Gen,Var,Control,verbose=FALSE,plot=TRUE))
library(EstimateBreed) Gen <- paste0("G", 1:20) Var <- round(rnorm(20, mean = 3.5, sd = 0.8), 2) Control <- rep(3.8, 20) data <- data.frame(Gen,Var,Control) transg_sel <- with(data,transg(Gen,Var,Control,verbose=FALSE,plot=TRUE))
Data set from a wheat experiment with different herbicide management.
trigo
trigo
A data.frame with 19 observations and 6 variables:
Treatment identification.
Ear length.
Ear mass
Number of grains on the cob.
Grain mass of ear.
Number of spikelets per spike
Real field data for use.
Data set from experiment with wheat genotypes subjected to different sowing density.
vig
vig
A data.frame with 54 observations and 6 variables:
Column with treatments.
First Count
Germination percentage.
Length of aerial part.
Root length.
Seedling dry mass.
See what EC is.
Real field data for use.